SiSoft Sandra
2005 |
Source: Sandra |
|
Sandra is
designed to test the theoretical power of a complete system as well as the
individual components. The results are also purely theoretical and may not
represent real world performance.
Sisoft Sandra 2005 Benchmark
Results |
|
Multimedia Benchmark |
CPU Benchmark |
Memory Benchmark |
Processors |
Integer SSE2: |
Floating-Point SSE2: |
Dhrystone SSE2: |
Whetstone SSE2: |
Integer SSE2: |
Float SSE2: |
Foxconn 955X7AA-8EKRS2 (955X 200/533) |
36082 |
42781 |
17356 |
4594 FPU / 7923 SSE2 |
5103 |
5106 |
Foxconn 945P7AA-8EKRS2 (945P 200/533) |
35865 |
42555 |
17272 |
4582 FPU / 7880 SSE2 |
5036 |
5040 |
Epox 5NVA+ SLI (NF4 SLI 200/667) |
35981 |
42592 |
17318 |
4586 FPU / 7891 SSE2 |
5076 |
5071 |
MSI P4N Diamond (NF4 SLI 200/667) |
36212 |
43446 |
17366 |
4602 FPU / 7944 SSE2 |
5040 |
5010 |
Foxconn NF4SLI7AA-8EKRS2 (NF4 SLI 200/800) |
35890 |
42591 |
17286 |
4580 FPU / 7884 SSE2 |
5087 |
5071 |
Albatron PX915SLI (915PL 200/400) |
22572 |
30264 |
9277 |
3823 FPU / 6665 SSE2 |
4788 |
4744 |
Units: |
it/s |
it/s |
MIPS |
MFLOPS |
MB/s |
MB/s |
The processor numbers from the Albatron PX915SLI are lower than the
other reference motherboards, but then again it is being tested with a single core Pentium
4 540 processor. Memory bandwidth numbers are low, but expected considering the
system is using DDR RAM.
SuperPI
calculates the number PI to 1 Million digits in this raw number crunching
benchmark. The program allows the user to change the number of digits of PI that
can be calculated from 16 thousand to 32 million. Our benchmark is set to 1
Million digits and 19 iterations.
SuperPi |
1 Million Digits: |
Seconds |
Ranking |
Foxconn 955X7AA-8EKRS2 (955X 200/667) |
39 |
|
Foxconn 945P7AA-8EKRS2 (945P 200/667) |
41 |
|
MSI P4N Diamond (NF4 SLI 200/800) |
39 |
|
Epox 5NVA+ SLI (NF4 SLI 200/800) |
41 |
|
Foxconn NF4SLI7AA-8EKRS2 (NF4 SLI 200/800) |
41 |
|
Albatron PX915SLI (915PL 200/400) |
42 |
|
While constrained by less memory bandwidth, the Albatron PX915SLI motherboard still does quite
well in SuperPI; completing the calculation to 1 million digits in 42
seconds.